Skip to main content

Provider Comparison

A detailed comparison of PyMuPDF4LLM vs LlamaParse to help you choose the right provider for your use case.

Quick Comparison

FeaturePyMuPDF4LLMLlamaParse
Speed⚡ < 1s🐌 5-30s
Cost💰 Free💳 API Credits
Setup✅ None🔑 API Key Required
Accuracy⭐⭐⭐ Good⭐⭐⭐⭐⭐ Excellent
Entity Extraction❌ None✅ Advanced
Table Analysis⚠️ Basic✅ Advanced
Image Handling⚠️ Placeholders✅ Full Extraction
Custom Instructions❌ No✅ Yes
Offline Operation✅ Yes❌ No
Multi-format❌ PDF Only✅ PDF, DOCX, PPTX, HTML

Detailed Feature Comparison

Text Extraction

PyMuPDF4LLM

  • Quality: Clean, well-formatted text
  • Speed: Lightning fast (< 1 second)
  • Formatting: Basic markdown conversion
  • Structure: Preserves headings and paragraphs
  • Languages: All PDF text encodings
result = docsray.extract("document.pdf", provider="pymupdf4llm")
text = result['extraction']['text']
# Clean, fast text extraction

LlamaParse

  • Quality: AI-enhanced text with context
  • Speed: Slower but comprehensive (5-30 seconds)
  • Formatting: Advanced markdown with structure
  • Structure: Deep understanding of document hierarchy
  • Languages: Multi-language support with translation
result = docsray.xray("document.pdf", provider="llama-parse")
text = result['analysis']['full_extraction']['text']
# Comprehensive, AI-analyzed text

Table Processing

PyMuPDF4LLM Table Handling

Capabilities:

  • ✅ Detects table boundaries
  • ✅ Extracts table content as text
  • ⚠️ Basic row/column detection
  • ❌ No structure preservation
  • ❌ No header identification

Example Output:

Quarter | Revenue | Growth
Q1 2023 | $100M | 15%
Q2 2023 | $115M | 20%

LlamaParse Table Handling

Capabilities:

  • ✅ Advanced structure analysis
  • ✅ Header identification
  • ✅ Cell relationship mapping
  • ✅ Data type recognition
  • ✅ HTML table output
  • ✅ Structured JSON data

Example Output:

{
"table": {
"headers": ["Quarter", "Revenue", "Growth"],
"rows": [
{"Quarter": "Q1 2023", "Revenue": "$100M", "Growth": "15%"},
{"Quarter": "Q2 2023", "Revenue": "$115M", "Growth": "20%"}
],
"html": "<table><tr><th>Quarter</th>..."
}
}

Entity Recognition

PyMuPDF4LLM

  • Entity Extraction: None
  • Recognition: No structured entity identification
  • Output: Plain text only

LlamaParse

  • Entity Types: 15+ types (PERSON, ORGANIZATION, DATE, MONETARY, etc.)
  • Accuracy: High with context understanding
  • Relationships: Maps entity relationships
  • Custom Entities: Configurable via instructions
result = docsray.xray("contract.pdf", provider="llama-parse")
entities = result['analysis']['extracted_content']['entities']

# Example entities:
# [{"type": "PERSON", "value": "John Smith", "context": "signatory"},
# {"type": "MONETARY", "value": "$50,000", "context": "payment amount"}]

Image Processing

PyMuPDF4LLM

  • Detection: Identifies image locations
  • Extraction: No image file extraction
  • Description: Simple placeholders only
  • Output: [Image: Figure 1 - Chart]

LlamaParse

  • Detection: Advanced image recognition
  • Extraction: Full image files with metadata
  • Description: AI-generated detailed descriptions
  • Analysis: Content analysis and context understanding
result = docsray.xray("report.pdf", provider="llama-parse")
images = result['analysis']['full_extraction']['images']

# Example image data:
# {
# "description": "Bar chart showing quarterly revenue growth",
# "page": 3,
# "metadata": {"width": 800, "height": 600, "format": "PNG"}
# }

Performance Comparison

Processing Speed

Document SizePyMuPDF4LLMLlamaParse
Small (1-5 pages)0.1-0.3s5-10s
Medium (5-20 pages)0.3-1.0s10-20s
Large (20+ pages)1.0-5.0s20-60s

Memory Usage

Document SizePyMuPDF4LLMLlamaParse
Small10-30MB50-100MB
Medium30-100MB100-300MB
Large100-300MB300-800MB

Accuracy Comparison

Text Extraction Accuracy:

  • PyMuPDF4LLM: 90-95% for standard PDFs
  • LlamaParse: 95-99% with context understanding

Table Extraction Accuracy:

  • PyMuPDF4LLM: 70-80% structure preservation
  • LlamaParse: 90-95% structure preservation

Entity Recognition Accuracy:

  • PyMuPDF4LLM: 0% (not supported)
  • LlamaParse: 85-95% depending on document type

Cost Analysis

PyMuPDF4LLM Costs

  • Processing: $0 (completely free)
  • API Calls: No API usage
  • Infrastructure: Local processing only
  • Scaling: No additional costs

LlamaParse Costs

  • Processing: Based on LlamaIndex Cloud pricing
  • API Calls: Per-document charges
  • Caching: Reduces repeat processing costs
  • Scaling: Costs scale with usage

Cost per Document (Estimated):

  • Small documents: $0.01-0.05
  • Medium documents: $0.05-0.15
  • Large documents: $0.15-0.50

Use Case Decision Matrix

Choose PyMuPDF4LLM When:

Speed is critical (need results in < 1 second)
Processing many documents (batch operations)
Cost is a concern (zero API charges)
Simple text extraction (basic content needs)
Development/testing (rapid iteration)
Offline processing (no internet required)
Metadata extraction (document properties)

Example scenarios:

  • Document preview in file managers
  • Search index generation
  • Quick document validation
  • Development workflows
  • High-volume document processing

Choose LlamaParse When:

Comprehensive analysis needed
Entity extraction required
Complex tables must be preserved
Image analysis important
Custom instructions needed
Production analysis (accuracy over speed)
Multi-format support required

Example scenarios:

  • Legal contract analysis
  • Financial document processing
  • Research paper analysis
  • Form data extraction
  • Business intelligence workflows

Hybrid Approaches

Sequential Processing

# Fast overview first, detailed analysis second
def analyze_document(doc_path):
# Quick overview with PyMuPDF4LLM
overview = docsray.peek(doc_path, provider="pymupdf4llm")

# Decide if detailed analysis is needed
if overview['metadata']['page_count'] > 50:
return overview # Too large, keep basic

# Comprehensive analysis with LlamaParse
return docsray.xray(doc_path, provider="llama-parse")

Fallback Strategy

# Try LlamaParse, fallback to PyMuPDF4LLM
def robust_extraction(doc_path):
try:
return docsray.xray(doc_path, provider="llama-parse")
except Exception as e:
print(f"LlamaParse failed: {e}, falling back...")
return docsray.extract(doc_path, provider="pymupdf4llm")

Parallel Processing

# Process with both providers simultaneously
import asyncio

async def dual_analysis(doc_path):
fast_task = docsray.extract(doc_path, provider="pymupdf4llm")
deep_task = docsray.xray(doc_path, provider="llama-parse")

fast_result = await fast_task
# Return fast result immediately, continue with deep analysis

deep_result = await deep_task
return {"fast": fast_result, "comprehensive": deep_result}

Format Support Comparison

PyMuPDF4LLM Supported Formats

  • PDF - Full support
  • DOCX - Not supported
  • PPTX - Not supported
  • HTML - Not supported
  • RTF - Not supported

LlamaParse Supported Formats

  • PDF - Full support
  • DOCX - Full support
  • PPTX - Full support
  • HTML - Full support
  • RTF - Full support
  • TXT - Full support

Quality Metrics

Text Extraction Quality

Standard Business Documents:

  • PyMuPDF4LLM: 95% accuracy
  • LlamaParse: 98% accuracy

Complex Layouts (Multi-column, forms):

  • PyMuPDF4LLM: 80% accuracy
  • LlamaParse: 95% accuracy

Scanned Documents:

  • PyMuPDF4LLM: 0% (no OCR)
  • LlamaParse: 85% accuracy

Technical Documents:

  • PyMuPDF4LLM: 90% accuracy
  • LlamaParse: 97% accuracy

Table Extraction Quality

Simple Tables:

  • PyMuPDF4LLM: 85% structure preserved
  • LlamaParse: 98% structure preserved

Complex Tables (merged cells, nested headers):

  • PyMuPDF4LLM: 60% structure preserved
  • LlamaParse: 90% structure preserved

Financial Tables:

  • PyMuPDF4LLM: 70% accuracy
  • LlamaParse: 95% accuracy

Recommendation Framework

Start with This Decision Tree:

Do you need results in < 1 second?
├─ Yes → PyMuPDF4LLM
└─ No
├─ Do you need entity extraction?
│ ├─ Yes → LlamaParse
│ └─ No
│ ├─ Do you need complex table analysis?
│ │ ├─ Yes → LlamaParse
│ │ └─ No
│ │ ├─ Is cost a major concern?
│ │ │ ├─ Yes → PyMuPDF4LLM
│ │ │ └─ No → LlamaParse (better quality)

Best Practice Recommendations

  1. Development: Start with PyMuPDF4LLM for rapid iteration
  2. Production: Use LlamaParse for comprehensive analysis
  3. Batch Processing: PyMuPDF4LLM for speed, LlamaParse for accuracy
  4. User-Facing: PyMuPDF4LLM for previews, LlamaParse for detailed views
  5. Cost-Sensitive: PyMuPDF4LLM with LlamaParse for critical documents only

Migration Path

From PyMuPDF4LLM to LlamaParse

# Current PyMuPDF4LLM usage
result = docsray.extract("doc.pdf", provider="pymupdf4llm")
text = result['extraction']['text']

# Migrate to LlamaParse for better results
result = docsray.xray("doc.pdf", provider="llama-parse")
text = result['analysis']['full_extraction']['text']
entities = result['analysis']['extracted_content']['entities']
tables = result['analysis']['full_extraction']['tables']

Gradual Migration Strategy

  1. Phase 1: Keep PyMuPDF4LLM for all operations
  2. Phase 2: Add LlamaParse for critical documents
  3. Phase 3: Use LlamaParse as primary, PyMuPDF4LLM as fallback
  4. Phase 4: Full LlamaParse adoption with cost optimization

Next Steps