Provider Comparison
A detailed comparison of PyMuPDF4LLM vs LlamaParse to help you choose the right provider for your use case.
Quick Comparison
Feature | PyMuPDF4LLM | LlamaParse |
---|---|---|
Speed | ⚡ < 1s | 🐌 5-30s |
Cost | 💰 Free | 💳 API Credits |
Setup | ✅ None | 🔑 API Key Required |
Accuracy | ⭐⭐⭐ Good | ⭐⭐⭐⭐⭐ Excellent |
Entity Extraction | ❌ None | ✅ Advanced |
Table Analysis | ⚠️ Basic | ✅ Advanced |
Image Handling | ⚠️ Placeholders | ✅ Full Extraction |
Custom Instructions | ❌ No | ✅ Yes |
Offline Operation | ✅ Yes | ❌ No |
Multi-format | ❌ PDF Only | ✅ PDF, DOCX, PPTX, HTML |
Detailed Feature Comparison
Text Extraction
PyMuPDF4LLM
- Quality: Clean, well-formatted text
- Speed: Lightning fast (< 1 second)
- Formatting: Basic markdown conversion
- Structure: Preserves headings and paragraphs
- Languages: All PDF text encodings
result = docsray.extract("document.pdf", provider="pymupdf4llm")
text = result['extraction']['text']
# Clean, fast text extraction
LlamaParse
- Quality: AI-enhanced text with context
- Speed: Slower but comprehensive (5-30 seconds)
- Formatting: Advanced markdown with structure
- Structure: Deep understanding of document hierarchy
- Languages: Multi-language support with translation
result = docsray.xray("document.pdf", provider="llama-parse")
text = result['analysis']['full_extraction']['text']
# Comprehensive, AI-analyzed text
Table Processing
PyMuPDF4LLM Table Handling
Capabilities:
- ✅ Detects table boundaries
- ✅ Extracts table content as text
- ⚠️ Basic row/column detection
- ❌ No structure preservation
- ❌ No header identification
Example Output:
Quarter | Revenue | Growth
Q1 2023 | $100M | 15%
Q2 2023 | $115M | 20%
LlamaParse Table Handling
Capabilities:
- ✅ Advanced structure analysis
- ✅ Header identification
- ✅ Cell relationship mapping
- ✅ Data type recognition
- ✅ HTML table output
- ✅ Structured JSON data
Example Output:
{
"table": {
"headers": ["Quarter", "Revenue", "Growth"],
"rows": [
{"Quarter": "Q1 2023", "Revenue": "$100M", "Growth": "15%"},
{"Quarter": "Q2 2023", "Revenue": "$115M", "Growth": "20%"}
],
"html": "<table><tr><th>Quarter</th>..."
}
}
Entity Recognition
PyMuPDF4LLM
- Entity Extraction: None
- Recognition: No structured entity identification
- Output: Plain text only
LlamaParse
- Entity Types: 15+ types (PERSON, ORGANIZATION, DATE, MONETARY, etc.)
- Accuracy: High with context understanding
- Relationships: Maps entity relationships
- Custom Entities: Configurable via instructions
result = docsray.xray("contract.pdf", provider="llama-parse")
entities = result['analysis']['extracted_content']['entities']
# Example entities:
# [{"type": "PERSON", "value": "John Smith", "context": "signatory"},
# {"type": "MONETARY", "value": "$50,000", "context": "payment amount"}]
Image Processing
PyMuPDF4LLM
- Detection: Identifies image locations
- Extraction: No image file extraction
- Description: Simple placeholders only
- Output:
[Image: Figure 1 - Chart]
LlamaParse
- Detection: Advanced image recognition
- Extraction: Full image files with metadata
- Description: AI-generated detailed descriptions
- Analysis: Content analysis and context understanding
result = docsray.xray("report.pdf", provider="llama-parse")
images = result['analysis']['full_extraction']['images']
# Example image data:
# {
# "description": "Bar chart showing quarterly revenue growth",
# "page": 3,
# "metadata": {"width": 800, "height": 600, "format": "PNG"}
# }
Performance Comparison
Processing Speed
Document Size | PyMuPDF4LLM | LlamaParse |
---|---|---|
Small (1-5 pages) | 0.1-0.3s | 5-10s |
Medium (5-20 pages) | 0.3-1.0s | 10-20s |
Large (20+ pages) | 1.0-5.0s | 20-60s |
Memory Usage
Document Size | PyMuPDF4LLM | LlamaParse |
---|---|---|
Small | 10-30MB | 50-100MB |
Medium | 30-100MB | 100-300MB |
Large | 100-300MB | 300-800MB |
Accuracy Comparison
Text Extraction Accuracy:
- PyMuPDF4LLM: 90-95% for standard PDFs
- LlamaParse: 95-99% with context understanding
Table Extraction Accuracy:
- PyMuPDF4LLM: 70-80% structure preservation
- LlamaParse: 90-95% structure preservation
Entity Recognition Accuracy:
- PyMuPDF4LLM: 0% (not supported)
- LlamaParse: 85-95% depending on document type
Cost Analysis
PyMuPDF4LLM Costs
- Processing: $0 (completely free)
- API Calls: No API usage
- Infrastructure: Local processing only
- Scaling: No additional costs
LlamaParse Costs
- Processing: Based on LlamaIndex Cloud pricing
- API Calls: Per-document charges
- Caching: Reduces repeat processing costs
- Scaling: Costs scale with usage
Cost per Document (Estimated):
- Small documents: $0.01-0.05
- Medium documents: $0.05-0.15
- Large documents: $0.15-0.50
Use Case Decision Matrix
Choose PyMuPDF4LLM When:
✅ Speed is critical (need results in < 1 second)
✅ Processing many documents (batch operations)
✅ Cost is a concern (zero API charges)
✅ Simple text extraction (basic content needs)
✅ Development/testing (rapid iteration)
✅ Offline processing (no internet required)
✅ Metadata extraction (document properties)
Example scenarios:
- Document preview in file managers
- Search index generation
- Quick document validation
- Development workflows
- High-volume document processing
Choose LlamaParse When:
✅ Comprehensive analysis needed
✅ Entity extraction required
✅ Complex tables must be preserved
✅ Image analysis important
✅ Custom instructions needed
✅ Production analysis (accuracy over speed)
✅ Multi-format support required
Example scenarios:
- Legal contract analysis
- Financial document processing
- Research paper analysis
- Form data extraction
- Business intelligence workflows
Hybrid Approaches
Sequential Processing
# Fast overview first, detailed analysis second
def analyze_document(doc_path):
# Quick overview with PyMuPDF4LLM
overview = docsray.peek(doc_path, provider="pymupdf4llm")
# Decide if detailed analysis is needed
if overview['metadata']['page_count'] > 50:
return overview # Too large, keep basic
# Comprehensive analysis with LlamaParse
return docsray.xray(doc_path, provider="llama-parse")
Fallback Strategy
# Try LlamaParse, fallback to PyMuPDF4LLM
def robust_extraction(doc_path):
try:
return docsray.xray(doc_path, provider="llama-parse")
except Exception as e:
print(f"LlamaParse failed: {e}, falling back...")
return docsray.extract(doc_path, provider="pymupdf4llm")
Parallel Processing
# Process with both providers simultaneously
import asyncio
async def dual_analysis(doc_path):
fast_task = docsray.extract(doc_path, provider="pymupdf4llm")
deep_task = docsray.xray(doc_path, provider="llama-parse")
fast_result = await fast_task
# Return fast result immediately, continue with deep analysis
deep_result = await deep_task
return {"fast": fast_result, "comprehensive": deep_result}